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Irreducible Representation of the Quantum
Group Eq(2)

A. Hegazi1 and M. Mansour1
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A basis for an irreducible representation of the quantum algebra Eq(2) is given,
consisting of eigenfunctions of the q-differential representation of the Casimir
operator of the quantum algebra Eq(2).

1. INTRODUCTION

Lie theory gives a natural setting for an algebraic interpretation of the
special functions [1, 2]. Using the exponential mapping from the algebra to
the corresponding group, one computes the matrix elements of group operators
in specific irreducible representations and finds that these are typically
expressible in terms of special functions. As an example consider the group
SU (2) with diagonal subgroup isomorphic to U(1). The matrix elements of
the irreducible representations of SU(2) with respect to U(1) basis can be
expressed in terms of Jacobi polynomials and the spherical functions are the
associated Legendre polynomials.

For quantum groups the situation is different. Only few quantum sub-
groups are available [3–5]. A similar connection has been established [6–8]
between quantum algebra and the so-called basic or q-special functions. In
this case one considers matrix elements of operators built with q-exponentials
of the algebra generators; these elements turn out to be expressible in terms
of q-hypergeometric series. Also, q-special functions appear as bases of
irreducible representations of quantum algebras. Two anlages of the exponen-
tial play an important role in our approach. They are defined by
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where [n]q 5 (qn/2 2 q2n/2)/(q1/2 2 q21/2) and [n]q! 5 [n]q [n 2 1]q . . . [1]q.

The two exponential functions have the following properties:

1. limq→12 eq(z(1 2 q)) 5 limq→12 Eq(z(1 2 q)) 5 exp(z).
2. Eq(x 1 y) 5 Eq(x)Eq( y) 5 Eq21(x)Eq21( y), such that xy 5 qyx.
3. eq(z1)eq(z2) 5 eq(q2N2/2z1 1 qN1/2z2)?, where the operators Ni 5 zi­i ,

i 5 1, 2, act on the constant 1, indicated by “?”.
4. eq(z)Eq(2z) 5 1
5. Eq(z) 5 eq(zq2N/2)?, N 5 z­z.

The two-dimensional quantum algebra Eq(2) is defined by the following
commutation relations:

[J3, J6] 5 6J6 (3)

[J+, J2] 5 0 (4)

The Casimir operator is given by C 5 J+ J2.
Now we define the q-differential representation of Eq(2) as

J3 5 Dq (5)

J+ 5 Eq( y){­x 2 1/xDq} (6)

J2 5 eq(2y){2­x 2 1/xDq} (7)

where Dq is the q-derivation. It is defined by

Dq f (z) 5
f (zq1/2) 2 f (zq21/2)

z(q1/2 2 q21/2)
5 z21[N ]q f (z) (8)

with

Dqeaz
q 5 aeaz

q (9)

Dqyn 5 [n]q yn21 (10)

It is straightforward to prove that the differential representations (5)–(7)
generate the algebra (3) and (4). Hence the Casimir operator is given by

Cq 5 J+J2 5 2­2
x 2 1/x­x 1 1/x2D2

q (11)

We assume the eigenfunctions of Cq to be emy
q Jm(x, q), where Jm(x,q) is the

q-Bessel function. Then
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Cqemy
q Jm(x, q) 5 lqemy

q Jm(x, q) (12)

where lq is the eigenvalue of Cq.
From equations (11) and (12) one gets

J 9m(x, q) 1 1/xJ8m(x, q) 1 (lq 2 m2/x2)Jm(x, q) 5 0 (13)

We can choose lq such that the differential equation (13) has a polynomial
solution.

We consider

Jm(x, q) 5 o
`

n50
cn(q)xn?r (14)

Then we get

cn 5
lq

m2 2 (n 1 r)2 cn22, n $ 2 (15)

c1 5 0, c0 Þ 0 (16)

If r 5 r1 5 m, then

J (1)
m (x, q) 5 xm o

`

n50
cn(q)xn (17)

cn(q) 5
lq

m2 2 (n 1 m)2 cn22, n $ 2

and for r 5 r2 5 2 m, one gets

J (2)
m (x, q) 5 x2m o

`

n50
cn(q)xn (18)

cn(q) 5
lq

m2 2 (n 2 m)2 cn22, n $ 2 (19)

The general form of the q-Bessel function is

Jm(x, q) 5 AJ (1)
m (x, q) 1 BJ (2)

m (x, q) (20)

such that r1 2 r2 ¸ Z ø {0}, where Z is the set of positive integers, and

eq(xz/2)eq(2 x/2z) 5 o
`

n52`
znJ (1)

n (x, q) (21)

Eq(xz/2)Eq(2qx/2z) 5 o
`

n52`
qn(n21)/2znJ (2)

n (x, q) (22)
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The basis emy
q Jm(x, q) of the irreducible representation of Eq(2) coincides

with the irreducible representation of the quantum group A(Eq(2)), where
A(Eq(2)) is the Hopf algebra generated by the elements z, z, a, and a with
the commutation relations

zz 5 zz 5 1, aa 5 aa, za 5 qaz, (23)

az 5 qza, az 5 qza, za 5 qaz

where q is a real number.
The comultiplication is given by

D(z) 5 z ^ z (24)

D(a) 5 a ^ 1 1 z ^ a (25)

The counit and the antipode are given respectively by

ε(z) 5 1, ε(a) 5 0 (26)

s(z) 5 z, s(a) 5 2za (27)

We can choose a quantum subalgebra A(K ) corresponding to translations
in A(Eq(2)) which is defined as C[t, t]. The coproduct DK , counit εK , and
antipode sK are given by

DK(t) 5 t ^ 1 1 1 ^ t (28)

εK(t) 5 1, sK(t) 5 2t (29)

and the projection epimorphism

p: A(Eq(2)) → C[t, t] (30)

is given by

p(a) 5 t, p(z) 5 1 (31)

The Hopf subalgebra A(K ) is coabelian and its irreducible representations
are one-dimensional labeled by arbitrary complex numbers l,

rl(w) 5 elt ^ w (32)

where

rl: C → A(K ) ^ C (33)

Since the associative A(Eq(2)) generated by z, z, a, and a defines the *-
algebra structure which is defined by z* 5 z and a* 5 a, we take the
representation space Hl for rl ↑ A(Eq(2)) as the Hilbert space A(Eq(2)) ^
C ' A(Eq(2)) of elements f satisfying
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((id ^ p) + D)f 5 f ^ elt (34)

where

(id ^ p) + D: A(Eq(2)) → A(Eq(2)) ^ A(K ) (35)

is the right coaction of A(K ) in A(Eq(2)).
This representations rl provide a family of irreducible representations

for the quantum group A(Eq(2)) in the form f ^ elt on a space of two complex
variables z, a. Without loss of generality we take

f ^ elt ' Fl(z, p (a)) ' Jl(z)ela
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